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ABSTRACT

The Schwinger Variational Principle is applied to s-wave electron-hydrogen atom scattering. We
show computationally, that, consistent with a recent paper by B. Apagyi, P. Levay, and K. Ladan_i'2, -

there are pseudo-resonances at the static exchange level of approximation, but not at the static level.

We employed the T-matr_/as well as the K-matrix version of the Schwinger Principle, with a real Slater
basis, and obtained the sa_e results in both. Wc are able to identify the origin of the pseudo-resonance_ %_, ,
as resulting from singularities in the separable potential that is eflrectively employed in the Lippman- "(c_ _-_

Schwinger equation from _,hich the Schwinger Variational Principle can be derived. The determination
of the pseudo-resonance p_rameters from the separable potential is computationally inexpensive and

• \

may be used to predict the pseudo-resonance parameters for the scattering calculations so that they

may be avoided.
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THE PREDICTION OF PSEUDO-RESONANCE POSITIONS IN

THE SCHWINGER VARIATIONAL PRINCIPLE

Rationale

The present work is a computational study of electron scattering from atomic hydrogen in its

ground electronic state. We are studying this system using the Schwinger Variational Principle (SVP).
This system has been studied many times before at a very high level of accuracy, l It is not our intent

to study e- + H just for the cross section data that result, but rather to study this system as a model
system to explore some of the subtle aspects of the SVP. We are primarily interested in electron-mol-
ecule collisions where L 2 basis set methods, such as the SVP, have shown the greatest utility, especially

for processes such as electronic excitation and dissociative recombination.

However, there are a number of problems that are encountered in using the SVP. In particular,
two recent papers 2,3 have shown that, contrary to the prevalent belief 4, the SVP does encounter

pseudo-resonances, even in the simple s-wave e- + H system, so long as the exchange effect is included.
Indeed, it is necessary to have an energy dependent potential in order to see these pseudo-resonances.

At the static level, the pseudo-res0nances are not encountered in the SVP, in contrast to the Kohn
Variational Principle 5 (KVP) where they are encountered even at the static level.

This fact apparently led many researchers 4,6 to conclude that the SUP did not suffer from the

occurrence of pseudo-resonances. The argument that was used to explain the assumed non-occurrence

of pseudo-resonances in the SUP is based on the paper of Adhikari and Sloan 7 who show that the
derivation of the SUP, from the Lippman-Schwinger equation by taking the variations of the wave func-

tion and deleting second order terms, is equivalent to approximating the exact potential in the

Lippman-Schwinger equation, by the projection of the exact potential onto an L _ basis set, thus
producing a finite rank separable approximation to the exact potential. It was then argued that the SVP

implementation was equivalent to solving the Lippman-Schwinger equation exactly for a certain
separable potential, and since the solution was exact, no spurious resonances would occur in the
solution. This, as it turned out, was true, but a somewhat subtle flaw in the argument leads to

pseudo-resonances anyway. We shall presently elaborate.

These false resonances are non-physical. This is especially troubling since resonance processes

have turned out to be the predominant mechanism by which molecules are excited and by which

molecules dissociate upon scattering by electrons. It is, therefore, extremely important to distinguish
the real resonances from the pseudo resonances.

Thus, in order to study the origin and characteristics of these resonances, it is fortuitous to
encounter them in so simple a system as s-wave e- + H, at the static exchange level :_(static + exchange

potential). We therefore decided not only to repeat the calculation of Ref. 2, but also to perform the
calculation using the T-matrix approach, as well as the K-matrix approach, in contrast to the authors of

Ref. 2 and 3. In doing so, several interesting aspects of the use of the SUP were studied and the origin
of the pseudo resonances was explained.
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Sketch Of The Theory

The theory for the K-matrix version of the calculation is given rather completely in Ref. 1. We

shall just limit our description of the theory to certain fundamental points that are useful to define the

differences in our work from Ref. 1 and to facilitate the explanation of our conclusions. We are solving

the time-independent Shr'6dinger equation, for electron-H atom scattering, which, in atomic units, is

/-/_( rl_ r-_) = EtP( _, _ ) (1)

where H is the Hamiltonian operator given by

12 12 1 1 + 1
H = -_Vl - _-V2 rl r2 [_11 - _[ (2)

and where _ is the system wavefunction. We then employ the basic idea of the close-coupling method
2_W tewhich is to expand the total wavefunction qJ in target states, e h n obtain, in standard fashion of

the close-coupling method, the following static exchange equation for the continuum orbital F

(V 2 +k2)F(_) = U(_)F(_) + (-1) s (_ IF) (3)

where k is the projectile momentum, U is the static potential, and _is the exchange kernel. The symbol

s is 0 for singlet scattering and 1 for triplet scattering. F of Eq. (3) is required to satisfy the standard
time-independent scattering boundary conditions 5 of incoming plane waves and outgoing spherical
waves.

We then expand the continuum orbital in partial waves according to

F(ff') = Eft (r)Y_t (O,ep). (4)
Ion

We just keep the I = 0 term in Eq. (4); hence, we are considering only s-wave scattering. Thus the model
is simple but realistic. Then, the partial s-wave continuum orbital f, satisfies the K-matrix boundary

conditions given by

lim f(r) =A (h') G0)(kr) + B (h')G(2)(kr)
F--I. 00

where the K-matrix is given by

K = tan(h) = B(K)/A (It).

The T-matrix boundary conditions are given by

lim f(r) = A(r)GO)(kr) + B(r)H(+)(kr)

where the T-matrix is given by

(5)

(6)

(7)
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T = ei_sin(_) = B(D/A (D. (8)

The G 0) and G (2) are related to the spherical Bessel functions by

= (9)

and

G(e)(kr)= -kin0 (kr) (10)

where j0istheI= 0 regularBesselfunctionand no istheI= 0 irregularsphericalBesselfunction.Also,

/-/(+)isthe Hankel functionofthe firstkindgivenby

H(+)(kr) = G(0(kr) + iG(2)(kr). (11)

The staticexchange differentialequationfors-wavescatteringisthen changed intoan integral

equation,instandardfashion,which iscalledthe Lippman-Schwinger equation,and isgivenby

f(r) = wO)(r)-

(-1)s_ _dy[w(1)(r<)w(2)(r>)]r, _dxVS(yr_)f(x) (12)

where the w functions are related to the Gs by

w(D(r) = GO)(kr)

w(Z)(r)=G(e)(kr) + flGO)(kr) (13)

where fl=0 fortheK-matrixcaseand fl=i fortheT-matrixcase.In Eq. (12),V sisthe sum of thestatic

and exchange potential so that

Vary,x) = U(x)_(x -y) + (-1) s _O(x,y) (14)

Then, we have 2

D = -_(wO)]VSl_ (15)

where D iseithertheK- or T-matrixdepending on the form of w2inEqs.(12)and (13).

Then we expand f ina Slaterbasisset

¢_n(a,r)= : -le-°r (16)

according to
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f(a,r) = £ Cn _n (a,r) (17)
n

We then proceed in a standard fashion which may be taken from Ref. 6 or 7 or from many other

places. We then obtain the following set of working equations:

where

and

n = -_3__'3

Cm --(W0)IV*[_m}

(18)

(19)

Mmn = (_Pm]V"s-V" _V* lepn) (20)

InF__xI.(21),_'isthereduced Green'sfunctionoperator.Itsform can be inferredby rewritingEq.

(12) in Dirac notation

I:)= lwm)+_'v*I:>

and comparing Eq. (21)and (12).

(21)

Results and Conclusions

The M of Eq. (18) can be written as

M = MR +flMI (22)

where fl =0 if we are using the K-matrix form and fl =i if we are using the T-matrix form. One of the
surprising results of the present work is that MI is explicitly singular and cannot be inverted. This does

not mean that M is singular, since we can use the following results. If, in general,

and

then

and

MEA +iB (23)

M -q- C +iD (23)

C_. =[.4 +BA-1B] -1 (24)
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D = -CBA -1 (25)

However, if B is singular, then, as the size of the matrices increases, the accuracy with which

M --1 can be comp_'ed decreases until the inverse is no longer accurate. In fact, for any matrix size, the

inverse is somewhat corrupted. The accuracy of the inverse computation can be tested by constructing

the unit matrix. Also, the results can be compared with the K-matrix result where there is no .._r. The

agreement between the phaseshifts decreases as the basis set size increases. On a 64 bit word length
computer, however, the agreement was still eight significant figures for a 15x15 matrix. We would like

to note that we attempted to alleviate this problem by using an orthogonalized basis set instead of the
es of Eq. (16). This improved the agreement between the K-matrix and the T-matrix phaseshifts by one

to two significant figures, but did not alleviate the problem. The conclusion to be drawn from these
results seems to be that there is no point in using the T-matrix form if real basis functions are to be used.

Pseudo-resonances are encountered, just as in Ref. 2, for both the K-matrix and T-matrix forms.

A surprising result, however, was that MR is not singular until the energy is very near the pseudo-reso-

nance energy. You have to be right on top of the pseudo-resonance energy before you lose the ability
to compute M_ 1. This is quite different from our experience with the Kohn anomalies, s The explana-

tion for this and for the existence of the pseudo-resonances can be understood by considering the
argument given above in the Rationale for the supposed non-existence of the pseudo-resonances in

the SVP. The finite rank potential that is substituted into the Lippman-Schwinger equation is given by

where

I¢ >_a(¢Iv" (26)

A -1 = ( ifl' IV s If[J") (27)

If V s is energy independent (static potential), then V sty is well behaved. If V s is energy dependent,

then there are going to be energies where A does not exist. In other words, the phase shift that we are

computing is indeed the exact phase shift for the separable potential V sw. The problem is, the separable
potential is non-physical at energies where A does not exist.

We have now investigated the energy dependence of A__to see if the energies where pseudo-reso-
nances occur are related in an identifiable way to the energies where the separable potential does not

exist. The central result of this paper is the finding that they are exactly the same energies. Thus, we

can predict the energy positions of the pseudo-resonances before we run the scattering calculation, and

thus avoid the troublesome energies. This ability is aided by the fact that the pseudo-resonances are

very narrow and become more narrow as the basis set size increases.
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